Trigonometrical Equations 3 Question 20

21. Prove that 5cosθ+3cosθ+π3+3 lies between -4 and 10.

(1979, 3M)

Show Answer

Solution:

  1. Let f(θ)=5cosθ+3cosθ+π3+3

=5cosθ+3cosθcosπ3sinθsinπ3+3

=5cosθ+312cosθ332sinθ+3=132cosθ332sinθ+3f(θ)=12(13cosθ33sinθ)+3

Put rcosα=13,rsinα=33, then

r=169+27=196=14f(θ)=12(rcosαcosθrsinαsinθ)+3=12rcos(θ+α)+3=7cos(θ+α)+3

Now, 1cos(θ+α)1

77cos(θ+α)7

4f(θ)10



NCERT Chapter Video Solution

Dual Pane