Trigonometrical Equations 3 Question 18

19. Find the coordinates of the points of intersection of the curves $y=\cos x, y=\sin 3 x$, if $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.

(1982, 3M)

Show Answer

Answer:

Correct Answer: 19. $\frac{\pi}{8}, \cos \frac{\pi}{8} \quad \frac{\pi}{4}, \cos \frac{\pi}{4}-\frac{3 \pi}{8}, \cos \frac{3 \pi}{8}$

Solution:

  1. The point of intersection is given by

$ \begin{aligned} \sin 3 x & =\cos x=\sin \frac{\pi}{2}-x \\ \Rightarrow \quad 3 x & =n \pi+(-1)^{n} \frac{\pi}{2}-x \end{aligned} $

(i) Let $n$ be even i.e. $n=2 m$

$ \begin{aligned} \Rightarrow & & 3 x & =2 m \pi+\frac{\pi}{2}-x \\ \Rightarrow & & n & =\frac{m \pi}{2}+\frac{\pi}{8} \end{aligned} $

(ii) Let $n$ be odd i.e. $n=(2 m+1)$

$ \begin{array}{ll} \therefore & 3 x=(2 m+1) \pi-\frac{\pi}{2}-x \\ \Rightarrow & 3 x=2 m \pi+\frac{\pi}{2}+x \\ \Rightarrow & x=m \pi+\frac{\pi}{4} \\ \text { Now, } & -\frac{\pi}{2} \leq x \leq \frac{\pi}{2} \\ \Rightarrow & x=\frac{\pi}{8}, \frac{\pi}{4}-\frac{3 \pi}{8} \quad \text { [from Eqs. (i) and (ii)] } \end{array} $

Thus, points of intersection are

$ \frac{\pi}{8}, \cos \frac{\pi}{8} \quad \frac{\pi}{4}, \cos \frac{\pi}{4} \quad-\frac{3 \pi}{8}, \cos \frac{3 \pi}{8} $



NCERT Chapter Video Solution

Dual Pane