Trigonometrical Equations 3 Question 10

11. For $0<\varphi<\pi / 2$, if $x=\sum _{n=0}^{\infty} \cos ^{2 n} \varphi, y=\sum _{n=0}^{\infty} \sin ^{2 n} \varphi$, $z=\sum _{n=0}^{\infty} \cos ^{2 n} \varphi \sin ^{2 n} \varphi$, then

(1993, 2M)

(a) $x y z=x z+y$

(b) $x y z=x y+z$

(c) $x y z=x+y+z$

(d) $x y z=y z+x$

Integer Answer Type Questions

Show Answer

Answer:

Correct Answer: 11. (b, c)

Solution:

  1. For $0<\varphi</ \pi / 2$, we have

$ x=\sum _{n=0}^{\infty} \cos ^{2 n} \varphi=1+\cos ^{2} \varphi+\cos ^{4} \varphi+\cos ^{6} \varphi+\ldots $

It is clearly a GP with common ratio of $\cos ^{2} \varphi$ which is $\leq 1$.

Hence, $x=\frac{1}{1-\cos ^{2} \varphi}=\frac{1}{\sin ^{2} \varphi} \quad \because S _{\infty}=\frac{a}{1-r},-1<r<1$

Similarly, $y=\frac{1}{\cos ^{2} \varphi}$

and

$ z=\frac{1}{1-\sin ^{2} \varphi \cos ^{2} \varphi} $

Now, $x+y=\frac{1}{\sin ^{2} \varphi}+\frac{1}{\cos ^{2} \varphi}$

$ =\frac{\cos ^{2} \varphi+\sin ^{2} \varphi}{\cos ^{2} \varphi \sin ^{2} \varphi}=\frac{1}{\cos ^{2} \varphi \sin ^{2} \varphi} $

Again, $\quad \frac{1}{z}=1-\sin ^{2} \varphi \cos ^{2} \varphi=1-\frac{1}{x y}$

$\Rightarrow \quad \frac{1}{z}=\frac{x y-1}{x y} \Rightarrow x y=x y z-z$

$\Rightarrow \quad x y+z=x y z$

Therefore, (b) is the answer from Eq. (i).

[putting the value of $x y$ ]

$\Rightarrow \quad x y z=x+y+z$

Therefore, (c) is also the answer.



NCERT Chapter Video Solution

Dual Pane