Trigonometrical Equations 1 Question 5

5. Let α and β be the roots of the quadratic equation x2sinθx(sinθcosθ+1)+cosθ=0(0<θ<45) and α<β. Then, n=0αn+(1)nβn is equal to

(a) 11cosθ11+sinθ

(b) 11cosθ+11+sinθ

(c) 11+cosθ11sinθ

(d) 11+cosθ+11sinθ

Show Answer

Answer:

Correct Answer: 5. (b)

Solution:

  1. Given

x2sinθxsinθcosθx+cosθ=0,

where 0<θ<45

xsinθ(xcosθ)1(xcosθ)=0

(xcosθ)(xsinθ1)=0

x=cosθ,x=cosecθα=cosθ and β=cosecθ( For 0<θ<45,12<cosθ<1 and 2<cosecθ<cosθ<cosecθ)

Now, consider, n=0αn+(1)nβn=n=0αn+n=0(1)nβn

=(1+α+α2+α3+)

+11β+1β21β3+

=11α+111β=11α+11+1β=11cosθ+11+sinθ1β=sinθ



NCERT Chapter Video Solution

Dual Pane