Trigonometrical Equations 1 Question 4

4. If sin4α+4cos4β+2=42sinαcosβ;

α,β[0,π], then cos(α+β)cos(αβ) is equal to

(2019 Main, 12 Jan II)

(a) -1

(b) 2

(c) 2

(d) 0

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. By applying AMGM inequality, on the numbers

sin4α,4cos4β,1 and 1 , we get

sin4α+4cos4β+24((sin4α)(4cos4β)11)1/4sin4α+4cos4β+242sinαcosβ

But, it is given that

sin4α+4cos4β+2=42sinαcosβ

So, sin4α=4cos4β=1

[ In AMGM, equality holds when all given

sinα=1 and sinβ=12 positive quantities are equal.]

Now, cos(α+β)cos(αβ)=2sinαsinβ [α,β[0,π]]

cosCcosD=2sinC+D2sinDC2=2×1×12[from eq. (i)]=2



NCERT Chapter Video Solution

Dual Pane