Trigonometrical Equations 1 Question 30

30. Solve 2(cosx+cos2x)+(1+2cosx)sin2x

=2sinx,πxπ

(1978, 3M)

Show Answer

Answer:

Correct Answer: 30. x=π,π2,π3,π3,π

Solution:

  1. Given that,

2cosx+2cos2x+sin2x+sin3x+sinx2sinx=0

2cosx+2cos2x+2sinxcosx+(sin3xsinx)=0

2cosx+2cos2x+2sinxcosx+2cos2xsinx=0

2cosx(1+sinx)+2cos2x(1+sinx)=0

2(1+sinx)(cosx+cos2x)=0

4(1+sinx)cos3x2cosx2=0

1+sinx=0

or cos3x2=0 or cosx2=0

If 1+sinx=0, then sinx=1

x=2nπ+3π2

If cos3x2=0, then 3x2=(2n+1)π2

x=(2n+1)π3

And if cosx2=0, then x2=(2n+1)π2

x=(2n+1)π

But given interval is [π,π].

Put n=1 in Eq. (i), x=π2

Put n=0,1,1,2 in Eq. (ii), x=π3,ππ3,π

Hence, the solution in [π,π] are π,π2,π3,π3,π.



NCERT Chapter Video Solution

Dual Pane