Trigonometrical Equations 1 Question 29

29. Find all the solutions of 4cos2xsinx2sin2x=3sinx.

(1983,2M)

Show Answer

Answer:

Correct Answer: 29. x:x=nπx:x=nπ+(1)nπ10

U x:x=nπ+(1)n3π10

Solution:

  1. Given, 4cos2xsinx2sin2x=3sinx

4(1sin2x)sinx2sin2x3sinx=0

4sinx4sin3x2sin2x3sinx=0

4sin3x2sin2x+sinx=0

sinx(4sin2x+2sinx1)=0

sinx=0 or 4sin2x+2sinx1=0

sinx=sin0 or sinx=2±4+162(4)

x=nπ or sinx=1±54

x=nπ or sinx=sinπ10

or sinx=sin3π10

x=nπ,nπ+(1)nπ10,nπ+(1)n3π10

General solution set is

x:x=nπx:x=nπ+(1)nπ10x:x=nπ+(1)n3π10



NCERT Chapter Video Solution

Dual Pane