Trigonometrical Equations 1 Question 25

25. Determine the smallest positive value of x (in degrees) for which

tan(x+100)=tan(x+50)tan(x)tan(x50).

(1993, 5M)

Show Answer

Answer:

Correct Answer: 25. x=30

Solution:

  1. tan(x+100)=tan(x+50)tanxtan(x50)

tan(x+100)tanx=tan(x+50)tan(x50).sin(x+100)cos(x+100)cosxsinx=sin(x+50)sin(x50)cos(x+50)cos(x50)sin(2x+100)+sin100sin(2x+100)sin100=cos100cos2xcos100+cos2x[sin(2x+100)+sin100][cos100+cos2x]=[cos100cos2x]×[sin(2x+100)sin100]sin(2x+100)cos100+sin(2x+100)cos2x+sin100cos100+sin100cos2x=cos100sin(2x+100)cos100sin100cos2xsin(2x+100)+cos2xsin100

2sin(2x+100)cos2x+2sin100cos100=0sin(4x+100)+sin100+sin200=0sin(4x+100)+2sin150cos50=0sin(4x+100)+212sin(9050)=0sin(4x+100)+sin40=0sin(4x+100)=sin(40)4x+100=nπ+(1)n(40)4x=n(180)+(1)n(40)100x=14[n(180)+(1)n(40)100]

The smallest positive value of x is obtained when n=1.

Therefore, x=14(180+40100)

x=14(120)=30



NCERT Chapter Video Solution

Dual Pane