Trigonometrical Equations 1 Question 22

22. The number of distinct solutions of the equation 54cos22x+cos4x+sin4x+cos6x+sin6x=2 in the interval [0,2π] is

(2015 Adv.)

Show Answer

Answer:

Correct Answer: 22. (8)

Solution:

  1. Here, 54cos22x+(cos4x+sin4x)+(cos6x+sin6x)=2

54cot2x+[(cos2x+sin2x)22sin2xcos2x]

+(cos2x+sin2x)[(cos2x+sin2x)23sin2xcos2x]=2

54cos22x+(12sin2xcos2x)+(13cos2xsin2x)=2

54cos22x5sin2xcos2x=0

54cos22x54sin22x=054cos22x54+54cos22x=052cos22x=54cos22x=122cos22x=11+cos4x=1cos4x=0 as 0x2π4x=π2,3π2,5π2,7π2,9π2,11π2,13π2,15π2 as 04x8πx=π8,3π8,5π8,7π8,9π8,11π8,13π8,15π8

Hence, the total number of solutions is 8 .



NCERT Chapter Video Solution

Dual Pane