Trigonometrical Equations 1 Question 15

15. In a ABC, angle A is greater than angle B. If the measures of angles A and B satisfy the equation 3sinx4sin3xk=0,0<k<1, then the measure of C is

(1990, 2M)

(a) π3

(b) π2

(c) 2π3

(d) 5π6

Show Answer

Answer:

Correct Answer: 15. (c)

Solution:

  1. Given, 3sinx4sin3x=k,0<k<1 which can also be written as sin3x=k.

It is given that A and B are solutions of this equation. Therefore,

sin3A=k and sin3B=k, where 0<k<10<3A<π and 0<3B<π Now, sin3A=k and sin3B=ksin3Asin3B=02cos32(A+B)sin32(AB)=0

cos3A+B2=0,sin3AB2=0

But it is given that, A>B and 0<3A<π,0<3B<π.

Therefore, sin3AB20

Hence, cos3A+B2=0

3A+B2=π2A+B=π3C=π(A+B)=2π3



NCERT Chapter Video Solution

Dual Pane