Theory of Equations 5 Question 6

6. If $a+b+c=0$, then the quadratic equation $3 a x^{2}+2 b x+c=0$ has

$(1983,1 M)$

(a) at least one root in $(0,1)$

(b) one root in $(2,3)$ and the other in $(-2,-1)$

(c) imaginary roots

(d) None of the above

Show Answer

Answer:

Correct Answer: 6. (a)

Solution:

  1. Let

$ f(x)=a x^{3}+b x^{2}+c x+d $

$\therefore$

$ f(0)=d \text { and } f(1)=a+b+c+d=d $

$[\because a+b+c=0]$

$ \therefore \quad f(0)=f(1) $

$f$ is continuous in the closed interval $[0,1]$ and $f$ is derivable in the open interval $(0,1)$.

Also,

$ f(0)=f(1) . $

$\therefore$ By Rolle’s theorem, $f^{\prime}(\alpha)=0$ for $0<\alpha<1$

Now,

$ \begin{aligned} & f^{\prime}(x)=3 a x^{2}+2 b x+c \\ & f^{\prime}(\alpha)=3 a \alpha^{2}+2 b \alpha+c=0 \end{aligned} $

$ \Rightarrow $

$\therefore$ Eq. (i) has exist atleast one root in the interval $(0,1)$. Thus, $f^{\prime}(x)$ must have root in the interval $(0,1)$ or $3 a x^{2}+2 b x+c=0$ has root $\in(0,1)$.



NCERT Chapter Video Solution

Dual Pane