Theory of Equations 4 Question 7

8. Let f(x) be a quadratic expression which is positive for all real values of x. If g(x)=f(x)+f(x)+f(x), then for any real x

(1990,2M)

(a) g(x)<0

(b) g(x)>0

(c) g(x)=0

(d) g(x)0

Analytical & Descriptive Questions

Show Answer

Answer:

Correct Answer: 8. (b)

Solution:

  1. Let f(x)=ax2+bx+c>0,xR

a>0 and b24ac<0

g(x)=f(x)+f(x)+f(x)g(x)=ax2+bx+c+2ax+b+2ag(x)=ax2+x(b+2a)+(c+b+2a)

whose discriminant

=(b+2a)24a(c+b+2a)=b2+4a2+4ab4ac4ab8a2

=b24a24ac=(b24ac)4a2<0 [from Eq. (i)] 

g(x)>0x, as a>0 and discriminant <0.

Thus, g(x)>0,xR.



NCERT Chapter Video Solution

Dual Pane