Theory of Equations 1 Question 56

Passage Type Questions

Let $p, q$ be integers and let $\alpha, \beta$ be the roots of the equation, $x^{2}-x-1=0$ where $\alpha \neq \beta$. For $n=0,1,2, \ldots \ldots$, let $a _n=p \alpha^{n}+q \beta^{n}$.

FACT : If $a$ and $b$ are rational numbers and $a+b \sqrt{5}=0$, then $a=0=b$.

(2017 Adv.)

57. $a _{12}=$

(a) $a _{11}+2 a _{10}$

(b) $2 a _{11}+a _{10}$

(c) $a _{11}-a _{10}$

(d) $a _{11}+a _{10}$

Show Answer

Answer:

Correct Answer: 57. (d)

Solution:

  1. $\quad \alpha^{2}=\alpha+1$

$ \beta^{2}=\beta+1 $

$a _n =p \alpha^{n}+q \beta^{n} $

$=p\left(\alpha^{n-1}+\alpha^{n-2}\right)+q\left(\beta^{n-1}+\beta^{n-2}\right) $

$=a _{n-1}+a _{n-2} $

$\therefore \quad a _{12} =a _{11}+a _{10}$



NCERT Chapter Video Solution

Dual Pane