Theory of Equations 1 Question 38

39. The sum of all the real roots of the equation $|x-2|^{2}+|x-2|-2=0$ is…… .

(1997, 2M)

Show Answer

Answer:

Correct Answer: 39. (4)

Solution:

  1. Given, $|x-2|^{2}+|x-2|-2=0$

Case I When $x \geq 2$

$ \begin{array}{cc} \Rightarrow & (x-2)^{2}+(x-2)-2=0 \\ \Rightarrow & x^{2}+4-4 x+x-2-2=0 \\ \Rightarrow & x^{2}-3 x=0 \\ \Rightarrow & x(x-3)=0 \\ \Rightarrow & x=0,3 \\ \Rightarrow & x=3 \end{array} $

Case II When $x<2$

$\Rightarrow \quad{-(x-2)}^{2}-(x-2)-2=0$

$\Rightarrow \quad(x-2)^{2}-x+2-2=0$

$\Rightarrow \quad x^{2}+4-4 x-x=0$

$\Rightarrow \quad x^{2}-4 x-(x-4)=0$

$\Rightarrow \quad x(x-4)-1(x-4)=0$

$\Rightarrow \quad(x-1)(x-4)=0$

$ \begin{array}{ll} \Rightarrow & x=1,4 \\ \Rightarrow & x=1 \end{array} $

[4 is rejected]

Hence, the sum of the roots is $3+1=4$.

Alternate Solution

Given, $|x-2|^{2}+|x-2|-2=0$

$\Rightarrow(|x-2|+2)(|x-2|-1)=0$

$\therefore \quad|x-2|=-2,1 \quad$ [neglecting -2 ]

$\Rightarrow \quad|x-2|=1 \quad \Rightarrow \quad x=3,1$

$\Rightarrow \quad$ Sum of the roots $=4$



NCERT Chapter Video Solution

Dual Pane