Theory of Equations 1 Question 36

37. Let $a>0, b>0$ and $c>0$. Then, both the roots of the equation $a x^{2}+b x+c=0$

(1979, 1M)

(a) are real and negative

(b) have negative real parts

(c) have positive real parts

(d) None of the above

Show Answer

Answer:

Correct Answer: 37. (b)

Solution:

  1. Since, $a, b, c>0$ and $a x^{2}+b x+c=0$

$\Rightarrow \quad x=\frac{-b}{2 a} \pm \frac{\sqrt{b^{2}-4 a c}}{2 a}$

Case I When $b^{2}-4 a c>0$

$\Rightarrow \quad x=\frac{-b}{2 a}-\frac{\sqrt{b^{2}-4 a c}}{2 a}$

and $\frac{-b}{2 a}+\frac{\sqrt{b^{2}-4 a c}}{2 a}$ both roots, are negative.

Case II When $b^{2}-4 a c=0$

$\Rightarrow x=\frac{-b}{2 a}$, i.e. both roots are equal and negative

Case III When $b^{2}-4 a c<0$

$ \Rightarrow \quad x=\frac{-b}{2 a} \pm i \frac{\sqrt{4 a c-b^{2}}}{2 a} $

have negative real part.

$\therefore$ From above discussion, both roots have negative real parts.



NCERT Chapter Video Solution

Dual Pane