Theory of Equations 1 Question 17

18. Let α and β be the roots of equation x26x2=0. If an=αnβn, for n1, then the value of a102a82a9 is

(a) 6

(b) -6

(c) 3

(d) -3

(2015 Main)

Show Answer

Answer:

Correct Answer: 18. (c)

Solution:

  1. Given, α and β are the roots of the equation x26x2=0.

an=αnβn for n1a10=α10β10a8=α8β8a9=α9β9

Now, consider

a102a82a9=α10β102(α8β8)2(α9α9)=α8(α22)β8(β22)2(α9β9)=α86αβ86β2(α9β9)=6α96β92(α96β9)=62=3α and β are the roots of x26x2=0 or x2=6x+2 and α2=6α+2α22=6α+2β22=6β

Alternate Solution

Since, α and β are the roots of the equation

x26x2=0. or x2=6x+2α2=6α+2α10=6α9+2α8 Similarly, β10=6β9+2β8

On subtracting Eq. (ii) from Eq. (i), we get

α10β10=6(α9β9)+2(α8β8)(an=αnβn)a10=6a9+2a8a102a8=6a9a102a82a9=3



NCERT Chapter Video Solution

Dual Pane