Theory of Equations 1 Question 16

17. Let π6<θ<π12. Suppose α1 and β1 are the roots of the equation x22xsecθ+1=0, and α2 and β2 are the roots of the equation x2+2xtanθ1=0. If α1>β1 and α2>β2, then α1+β2 equals

(2016 Adv.)

(a) 2(secθtanθ)

(b) 2secθ

(c) 2tanθ

(d) 0

Show Answer

Answer:

Correct Answer: 17. (c)

Solution:

  1. Here, x22xsecθ+1=0 has roots α1 and β1.

α1,β1=2secθ±4sec2θ42×1=2secθ±2|tanθ|2

Since, θπ6,π12,

i.e. θIV quadrant =2secθ2tanθ2

α1=secθtanθandβ1=secθ+tanθ[asα1>β1] and x2+2xtanθ1=0 has roots α2 and β2.

 i.e. α2,β2=2tanθ±4tan2θ+42α2=tanθ+secθ and β2=tanθsecθ[asα2>β2] Thus, α1+β2=2tanθ



NCERT Chapter Video Solution

Dual Pane