Theory of Equations 1 Question 11

12. Let α and β be two roots of the equation x2+2x+2=0, then α15+β15 is equal to

(2019 Main, 9 Jan I)

(a) 256

t (b) 512

(c) -256

(d) -512

Show Answer

Answer:

Correct Answer: 12. (c)

Solution:

  1. We have, x2+2x+2=0

x=2±482[ roots of ax2+bx+c=0 are given by x=b±b24ac2a]

x=1±i

Let α=1+i and β=1i.

Then, α15+β15=(1+i)15+(1i)15

=[(1i)15+(1+i)15]=212i2+212+i2=2cosπ4isinπ4+2cosπ4+isinπ4=(2)15cos15π4isin15π4+cos15π4+isin15π4

[using De’ Moivre’s theorem (cosθ±isinθ)n=cosnθ±isinnθ,nZ]

=(2)152cos15π4=(2)152×12

cos15π4=cos4ππ4=cosπ4=12

=(2)16=28=256.

Alternate Method

α15+β15=(1+i)15+(1i)15=[(1i)15+(1+i)15]=(1i)161i+(1+i)161+i=[(1i)2]81i+[(1+i)2]81+i

=[1+i22i]81i+[1+i2+2i]81+i=(2i)81i+(2i)81+i=2811i+11+i[i4n=1,nZ]=25621(i)2=25622=256



NCERT Chapter Video Solution

Dual Pane