Theory of Equations 1 Question 1

1. If α and β are the roots of the quadratic equation, x2+xsinθ2sinθ=0,θ0,π2, then α12+β12(α12+β12)(αβ)24 is equal to

(a) 212(sinθ+8)12

(b) 26(sinθ+8)12

(c) 212(sinθ4)12

(d) 212(sinθ8)6

(2019 Main, 10 April I)

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. Given quadratic equation is

x2+xsinθ2sinθ=0,θ0,π2

and its roots are α and β.

So, sum of roots =α+β=sinθ

and product of roots =αβ=2sinθ

αβ=2(α+β)

Now, the given expression is α12+β12(α12+β12)(αβ)24

=α12+β121α12+1β12(αβ)24=α12+β12β12+α12α12β12(αβ)24=αβ(αβ)2=αβ(α+β)24αβ=2(α+β)(α+β)28(α+β) [from Eq. (i)] =2(α+β)8=2sinθ8[α+β=sinθ]=212(sinθ+8)12



NCERT Chapter Video Solution

Dual Pane