Straight Line and Pair of Straight Lines 3 Question 7

8. Three lines $p x+q y+r=0, q x+r y+p=0$ and $r x+p y+q=0$ are concurrent, if

(1985, 2M)

(a) $p+q+r=0$

(c) $p^{3}+q^{3}+r^{3}=3 p q r$

(b) $p^{2}+q^{2}+r^{2}=p r+r q$

(d) None of these

Match the Columns

Match the conditions/expressions in Column I with statement in Column II.

Show Answer

Answer:

Correct Answer: 8. $(a, c)$

Solution:

  1. Given lines $p x+q y+r=0, q x+r y+p=0$ and $\quad r x+p y+q=0$ are concurrent.

$\therefore \quad\left|\begin{array}{ccc}p & q & r \ q & r & p \ r & p & q\end{array}\right|=0$

Applying $R _1 \rightarrow R _1+R _2+R _3$ and taking common from $R _1$

$$ \begin{array}{rr} & (p+q+r)\left|\begin{array}{lll} 1 & 1 & 1 \\ q & r & p \\ r & p & q \end{array}\right|=0 \\ \Rightarrow & (p+q+r)\left(p^{2}+q^{2}+r^{2}-p q-q r-p r\right)=0 \\ \Rightarrow & p^{3}+q^{3}+r^{3}-3 p q r=0 \end{array} $$

Therefore, (a) and (c) are the answers.



NCERT Chapter Video Solution

Dual Pane