Sequences and Series 5 Question 4

4.

If $x>1, y>1, z>1$ are in GP, then $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}$, $\frac{1}{1+\ln z}$ are in

(1998, 2M)

(a) AP

(b) HP

(c) GP

(d) None of these

Show Answer

Answer:

Correct Answer: 4. (b)

Solution:

  1. Let the common ratio of the GP be $r$. Then,

$ y=x r \text { and } z=x r^{2} $

$\Rightarrow \ln y=\ln x+\ln r$ and $\ln z=\ln x+2 \ln r$

Let $ \quad A=1+\ln x, D=\ln r $

Then, $\frac{1}{1+\ln x}=\frac{1}{A}, \frac{1}{1+\ln y}=\frac{1}{1+\ln x+\ln r}=\frac{1}{A+D}$

and $\quad \frac{1}{1+\ln z}=\frac{1}{1+\ln x+2 \ln r}=\frac{1}{A+2 D}$

Therefore, $\frac{1}{1+\ln x}, \frac{1}{1+\ln y}, \frac{1}{1+\ln z}$ are in HP.



NCERT Chapter Video Solution

Dual Pane