Sequences and Series 4 Question 5
5.
If $(10)^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9}=k(10)^{9}$, then $k$ is equal to
(2014 Main)
(a) $\frac{121}{10}$
(b) $\frac{441}{100}$
(c) 100
(d) 110
Show Answer
Answer:
Correct Answer: 5. (c)
Solution:
- Given,
$ \begin{aligned} & k \cdot 10^{9}=10^{9}+2(11)^{1}(10)^{8}+3(11)^{2}(10)^{7}+\ldots+10(11)^{9} \\ & \Rightarrow \quad k=1+2 \frac{11}{10}+3 \frac{11}{10}^{2}+\ldots+10 \frac{11}{10} \\ & \frac{11}{10} k=1 \quad \frac{11}{10}+2 \frac{11}{10}^{2}+\ldots+9 \frac{11}{10}^{9}+10 \frac{11}{10} \ldots \end{aligned} $
On subtracting Eq. (ii) from Eq. (i), we get
$ \begin{aligned} & \Rightarrow k \frac{10-11}{10}=\frac{1 \frac{11}{10}^{10}-1}{\frac{11}{10}-1}-10 \frac{11}{10}^{10} \end{aligned} $
$[\because$ In GP, sum of $n$ terms $=\frac{a\left(r^{n}-1\right)}{r-1}$, when $r>1]$
$ \begin{array}{ll} \Rightarrow & -k=10[10 (\frac{11}{10})^{10}-10-10 (\frac{11}{10})^{10} ]\\ \therefore & k=100 \end{array} $