Sequences and Series 2 Question 6

7. The sides of a right angled triangle are in arithmetic progression. If the triangle has area 24 , then what is the length of its smallest side?

(2017 Adv.)

(a) -153

(b) -133

(c) -131

(d) -135

Show Answer

Answer:

Correct Answer: 7. (c)

Solution:

  1. We have, $S=a _1+a _2+\ldots+a _{30}$

$$ =15\left[2 a _1+29 d\right] $$

(where $d$ is the common difference)

$$ \because S _n=\frac{n}{2}[2 a+(n-1) d] $$

and

$$ \begin{aligned} T & =a _1+a _3+\ldots+a _{29} \\ & \left.=\frac{15}{2}\left[2 a _1+14 \times 2 d\right)\right] \end{aligned} $$

( $\because$ common difference is $2 d$ )

$$ \Rightarrow \quad 2 T=15\left[2 a _1+28 d\right] $$

From Eqs. (i) and (ii), we get

$$ S-2 T=15 d=75 \quad[\because S-2 T=75] $$

$$ \Rightarrow \quad d=5 $$

Now, $\quad a _{10}=a _5+5 d$

$$ =27+25=52 $$



NCERT Chapter Video Solution

Dual Pane