Properties of Triangles 3 Question 18

18. Let ABC be a triangle having O and I as its circumcentre and incentre, respectively. If R and r are the circumradius and the inradius respectively, then prove that (IO)2=R22Rr. Further show that the BIO is a right angled triangle if and only if b is the arithmetic mean of a and c.

(1999, 10M)

Show Answer

Solution:

  1. It is clear from the figure that, OA=R

AI=IFsin(A/2)

AIF is right angled triangle, so =rsin(A/2)

 But r=4Rsin(A/2)sin(B/2)sin(C/2)AI=4Rsin(B/2)sin(C/2) Again, GOA=BOAG=90B Therefore, IAO=IACOAC=A/2(90B)=12(A+2B180)=12(A+2BABC)=12(BC)

In OAI,OI2=OA2+AI22(OA)(AI)cos(IAO)

=R2+[4Rsin(B/2)sin(C/2)]22R[4Rsin(B/2)sin(C/2)]cosBC2=[R2+16R2sin2(B/2)sin2(C/2)8R2sin(B/2)sin(C/2)cosBC2=R2[1+16sin2(B/2)sin2(C/2)8sin(B/2)sin(C/2)cosBC2=R2[1+8sin(B/2)sin(C/2)2sin(B/2)sin(C/2)cosBC2

=R2[1+8sin(B/2)sin(C/2)cosBC2+cosB+C2cosBC2=R218sin(B/2)sin(C/2)cosB+C2=R218sin(B/2)sin(C/2)cosπ2A2A2+B2+C2=π2=R2[18sin(A/2)sin(B/2)sin(C/2)]=R218r4R=R22Rr

Now, in right angled BIO,

OB2=BI2+IO2R2=BI2+R22Rr2Rr=BI22Rr=r2/sin2(B/2)2R=r/sin2(B/2)2Rsin2B/2=rR(1cosB)=rabc4Δ(1cosB)=Δsabc(1cosB)=4Δ2sabc1a2+c2b22ac=4Δ2sabc2aca2c2+b22ac=4Δ2s

b[b2(ac)2]=4Δ2sb[b2(ac)2]=8(sa)(sb)(sc)b[b(ac)b+(ac)]=8(sa)(sb)(sc)b[(b+ca)(b+ac)]=8(sa)(sb)(sc)b[(2s2a)(2s2c)]=8(sa)(sb)(sc)b[22(sa)(sc)]=8(sa)(sb)(sc)b=2s2b2b=a+c

which shows that b is arithmetic mean between a and c.



NCERT Chapter Video Solution

Dual Pane