Properties of Triangles 2 Question 8

8. Prove that a ABC is equilateral if and only if tanA+tanB+tanC=33.

(1998, 8M)

Show Answer

Solution:

  1. If the triangle is equilateral, then

A=B=C=60

tanA+tanB+tanC=3tan60=33

Conversely assume that,

tanA+tanB+tanC=33

But in ABC,A+B=180C

Taking tan on both sides, we get

tan(A+B)=tan(180C)

tanA+tanB1tanAtanB=tanC

tanA+tanB=tanC+tanAtanBtanC

tanA+tanB+tanC=tanAtanBtanC=33

None of the tanA,tanB,tanC can be negative

So, ABC cannot be obtuse angle triangle.

Also, AMGM

13[tanA+tanB+tanC][tanAtanBtanC]1/3

13(33)(33)1/333.

So, equality can hold if and only if tanA=tanB=tanC

or A=B=C or when the triangle is equilateral.



NCERT Chapter Video Solution

Dual Pane