Properties of Triangles 2 Question 13

13. If in a ABC,cosAcosB+sinAsinBsinC=1, then show that a:b:c=1:1:2.

(1986,5 M)

Show Answer

Solution:

  1. Given, cosAcosB+sinAsinBsinC=1

sinC=1cosAcosBsinAsinB1cosAcosBsinAsinB1[sinC1]1cosAcosBsinAsinBcos(AB)1cos(AB)=1AB=0[ascos(θ)1]

On putting A=B in Eq. (i), we get

sinC=1cos2Asin2AsinC=1C=π/2 Now, A+B+C=π

A+B=π2A=π4A=B and C=π2sinA:sinB:sinC=sinπ4:sinπ4:sinπ2a:b:c=12:12:1=1:1:2



NCERT Chapter Video Solution

Dual Pane