Properties of Triangles 1 Question 22

22. With usual notation, if in a ABCb+c11=c+a12 =a+b13, then prove that cosA7=cosB19=cosC25.

(1984, 4M)

Show Answer

Solution:

  1. Let b+c11=c+a12=a+b13=λ

(b+c)=11λ,c+a=12λ,a+b=13λ

2(a+b+c)=36λ

a+b+c=18λ

On solving Eqs. (i) and (ii), we get

a=7λ,b=6λ and c=5λcosA=b2+c2a22bc=36λ2+25λ249λ22(30)λ2=15cosB=a2+c2b22ac=49λ2+25λ236λ270λ2=1935cosC=a2+b2c22ab=49λ2+36λ225λ284λ2=57

cosA:cosB:cosC=15:1935:57=7:19:25



NCERT Chapter Video Solution

Dual Pane