Permutations and Combinations 2 Question 9

9. Let $S={1,2,3, \ldots \ldots, 9}$. For $k=1,2, \ldots \ldots .5$, let $N _k$ be the number of subsets of $S$, each containing five elements out of which exactly $k$ are odd. Then $N _1+N _2+N _3+N _4+N _5=\quad$ (2017 Adv.)

(a) 210

(b) 252

(c) 126

(d) 125

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

  1. $N _i={ }^{5} C _k \times{ }^{4} C _{5-k}$

$$ \begin{aligned} & N _1=5 \times 1 \\ & N _2=10 \times 4 \\ & N _3=10 \times 6 \\ & N _4=5 \times 4 \\ & N _5=1 \\ & N _1+N _2+N _3+N _4+N _5=126 \end{aligned} $$



NCERT Chapter Video Solution

Dual Pane