Parabola 1 Question 10

10. If the line $x-1=0$ is the directrix of the parabola $y^{2}-k x+8=0$, then one of the values of $k$ is

(a) $\frac{1}{8}$

(b) 8

(c) 4

(d) $\frac{1}{4}$

(2000, 2M)

Show Answer

Answer:

Correct Answer: 10. (c)

Solution:

  1. Given,

$$ y^{2}=k x-8 $$

$$ \Rightarrow \quad y^{2}=k \quad x-\frac{8}{k} $$

Shifting the origin $Y^{2}=k X$, where $Y=y, X=x-8 / k$.

Directrix of standard parabola is $X=-\frac{k}{4}$ Directrix of original parabola is $x=\frac{8}{k}-\frac{k}{4}$

Now, $x=1$ also coincides with $x=\frac{8}{k}-\frac{k}{4}$

On solving, we get $k=4$



NCERT Chapter Video Solution

Dual Pane