Matrices and Determinants 3 Question 3

4. If A=[cosθsinθsinθcosθ], then the matrix A50 when θ=π12, is equal to

(2019 Main, 9 Jan I)

(a) [12323212]

(b) [32121232]

(c) [32121232]

(d) [12323212]

Show Answer

Answer:

Correct Answer: 4. (c)

Solution:

  1. We have, A=[cosθsinθsinθcosθ]

|A|=cos2θ+sin2θ=1

and adjA=[cosθsinθsinθcosθ]

. If A=[abcd], then adjA=[dbca]

A1=[cosθsinθsinθcosθ]A1=adjA|A|

Note that, A50=(A1)50

Now, A2=(A1)(A1)

A2=[cosθsinθsinθcosθ] [cosθsinθsinθcosθ]

= [cos2θsin2θcosθsinθ+sinθcosθcosθsinθcosθsinθsin2θ+cos2θ]

= [cos2θsin2θsin2θcos2θ]

Also, A3=(A2)(A1)

A3=[cos2θsin2θsin2θcos2θ][cosθsinθsinθcosθ]=[cos3θsin3θsin3θcos3θ] Similarly, A50=[cos50θsin50θsin50θcos50θ]=[cos256πsin256πsin256πcos256π]( when θ=π12)=[cosπ6sinπ6sinπ6cosπ6][cos(25π6)=cos(4π+π6)=cosπ6 and sin(25π6)=sin(4π+π6)=sinπ6]=[32121232]



NCERT Chapter Video Solution

Dual Pane