Matrices and Determinants 2 Question 9

11. Let dR, and

A= |24+d(sinθ)21(sinθ)+2d5(2sinθ)d(sinθ)+2+2d| ,θ[θ,2π].

If the minimum value of det(A) is 8 , then a value of d is

(2019 Main, 10 Jan I)

(a) -5

(b) -7

(c) 2(2+1)

(d) 2(2+2)

Show Answer

Answer:

Correct Answer: 11. (a)

Solution:

  1. Given,

A=|24+d(sinθ)21(sinθ)+2d5(2sinθ)d(sinθ)+2+2d|

|A|=|24+d(sinθ)21(sinθ)+2d5(2sinθ)d(sinθ)+2+2d|=|24+d(sinθ)21(sinθ)+2d100|=1[(4+d)d(sinθ+2)(sinθ2)]=(d2+4dsin2θ+4)=(d2+4d+4)sin2θ=(d+2)2sin2θ

Note that |A| will be minimum if sin2θ is maximum i.e. if sin2θ takes value 1 .

|A|min=8, therefore (d+2)21=8(d+2)2=9d+2=±3d=1,5



NCERT Chapter Video Solution

Dual Pane