Matrices and Determinants 2 Question 7

8. If

$ \left|\begin{matrix} a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{matrix}\right| $

$=(a+b+c)(x+a+b+c)^{2}, x \neq 0$ and $a+b+c \neq 0$, then $x$ is equal to

(2019 Main, 11 Jan II)

(a) $-(a+b+c)$

(b) $-2(a+b+c)$

(c) $2(a+b+c)$

(d) $a b c$

Show Answer

Answer:

Correct Answer: 8. (b)

Solution:

  1. Let $\Delta=$ $\left|\begin{matrix}a-b-c & 2 a & 2 a \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b\end{matrix}\right|$

Applying $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$, we get

$ \begin{aligned} \Delta & =\left|\begin{matrix} a+b+c & a+b+c & a+b+c \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{matrix}\right| \\ & =(a+b+c)\left|\begin{matrix} 1 & 1 & 1 \\ 2 b & b-c-a & 2 b \\ 2 c & 2 c & c-a-b \end{matrix}\right| \end{aligned} $

(taking common $(a+b+c)$ from $\left.R_{1}\right)$

Applying $C_{2} \rightarrow C_{2}-C_{1}$ and $C_{3} \rightarrow C_{3}-C_{1}$, we get

$ \Delta=(a+b+c)\left|\begin{matrix} 1 & 0 & 0 \\ 2 b & -(a+b+c) & 0 \\ 2 c & 0 & -(a+b+c) \end{matrix}\right| $

Now, expanding along $R_{1}$, we get

$ \Delta=(a+b+c) 1 .(a+b+c)^{2}-0 $

$ =(a+b+c)^{3}=(a+b+c)(x+a+b+c)^{2} \text { (given) } $

$\Rightarrow(x+a+b+c)^{2}=(a+b+c)^{2}$

$\Rightarrow \quad x+a+b+c= \pm(a+b+c)$

$\Rightarrow \quad x=-2(a+b+c)$



NCERT Chapter Video Solution

Dual Pane