Matrices and Determinants 2 Question 40

44. Show that

$ \left|\begin{aligned} & { }^{x} C_{r} \quad{ }^{x} C_{r+1} \quad{ }^{x} C_{r+2} \\ & { }^{y} C_{r} \quad{ }^{y} C_{r+1} \quad{ }^{y} C_{r+2} \\ & { }^{z} C_{r} \quad{ }^{z} C_{r+1} \quad{ }^{z} C_{r+2} \end{aligned}\right| $ $ \left|\begin{aligned} & { }^{x} C_{r} \quad{ }^{x} C_{r+1} \quad{ }^{x+2} C_{r+2} \\ & { }^{y} C_{r} \quad{ }^{y} C_{r+1} \quad{ }^{y+2} C_{r+2} \\ & { }^{z} C_{r} \quad{ }^{z} C_{r+1} \quad{ }^{z+2} C_{r+2} \end{aligned}\right| $

$(1985,3 M)$

Show Answer

Answer:

Solution:

  1. Let $\Delta=$ $ \left|\begin{aligned} & { }^{x} C_{r} \quad{ }^{x} C_{r+1} \quad{ }^{x} C_{r+2} \\ & { }^{y} C_{r} \quad{ }^{y} C_{r+1} \quad{ }^{y} C_{r+2} \\ & { }^{z} C_{r} \quad{ }^{z} C_{r+1} \quad{ }^{z} C_{r+2} \end{aligned}\right| $

Applying $C_{3} \rightarrow C_{3}+C_{2}$

$\Delta=$ $ \left|\begin{aligned} & { }^{x} C_{r} \quad{ }^{x} C_{r+1} \quad{ }^{x+1} C_{r+2} \\ & { }^{y} C_{r} \quad{ }^{y} C_{r+1} \quad{ }^{y+1} C_{r+2} \\ & { }^{z} C_{r} \quad{ }^{z} C_{r+1} \quad{ }^{z+1} C_{r+2} \end{aligned}\right| $

$ \left[\because{ }^{n} C_{r}+{ }^{n} C_{r-1}={ }^{n+1} C_{r}\right] $

Applying $C_{2} \rightarrow C_{2}+C_{1}$

Applying $C_{3} \rightarrow C_{3}+C_{2}$

Hence proved.



NCERT Chapter Video Solution

Dual Pane