Matrices and Determinants 2 Question 39

43. Let Δa=|a1n6(a1)22n24n2(a1)33n33n23n|

Show that a=1nΔa=c constant.

(1989,5M)

Show Answer

Solution:

  1. Given, Δa=|a1n6(a1)22n24n2(a1)33n33n23n|

a=1nΔa= |a=1n(a1)n6a=1n(a1)22n24n2a=1n(a1)33n33n23n|

=|n(n1)2n6n(n1)(2n1)62n24n2n2(n1)243n33n23n|=n2(n1)2|116(2n31)32n4n2n(n1)23n23n23n|=n3(n1)12|1162n16n12n6n16n6n6|

Applying C3C36C1

=n3(n1)12|1102n16n0n16n0|=0

a=1nΔa=c

[c=0, i.e. constant ]



NCERT Chapter Video Solution

Dual Pane