Matrices and Determinants 2 Question 10

12. If

$ \begin{aligned} \begin{vmatrix} & x-4 & 2 x & 2 x \\ & 2 x & x-4 & 2 x \\ & 2 x & 2 x & x-4 \\ \end{vmatrix} =(A+B x)(x-A)^{2} \end{aligned} $ , then the ordered pair $(A, B)$ is equal to

(2018 Main)

(a) $(-4,-5)$

(b) $(-4,3)$

(c) $(-4,5)$

(d) $(4,5)$

Show Answer

Answer:

Correct Answer: 12. (c)

Solution:

  1. Given,

$ \begin{aligned} \begin{vmatrix} & x-4 & 2 x & 2 x \\ & 2 x & x-4 & 2 x \\ & 2 x & 2 x & x-4 \\ \end{vmatrix} =(A+B x)(x-A)^{2} \end{aligned} $

$\Rightarrow \text { Apply } C_{1} \rightarrow C_{1}+C_{2}+C_{3} $

$ \begin{aligned} \begin{vmatrix} & 5 x-4 & 2 x & 2 x \\ & 5 x-4 & x-4 & 2 x\\ & 5 x-4 & 2 x & x-4 \end{vmatrix} \end{aligned} $

$=(A+B x)(x-A)^{2} $

Taking common $(5 x-4)$ from $C_{1}$, we get

(5x-4) $ \begin{vmatrix} 1 & 2 x & 2 x \\ & x-4 & 2 x \\ 1 & 2 x & x-4 \end{vmatrix}=(A+B x)(x-A)^{2} $

Apply $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$

$ \therefore(5 x-4) \begin{vmatrix} 1 & 2 x & 0 \\ 0 & -x-4 & 0 \\ 0 & 0 & -x-4 \end{vmatrix}=(A+B x)(x-A)^{2} $

Expanding along $C_{1}$, we get

$ (5 x-4)(x+4)^{2}=(A+B x)(x-A)^{2} $

Equating, we get, $A=-4$ and $B=5$



NCERT Chapter Video Solution

Dual Pane