Matrices and Determinants 2 Question 1

1. A value of θ(0,π/3), for which

|1+cos2θsin2θ4cos6θcos2θ1+sin2θ4cos6θcos2θsin2θ1+4cos6θ|

(a) π9

(b) π18

(c) 7π24

(d) 7π36

2019 Main, 12 April II

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. Let Δ=|1+cos2θsin2θ4cos6θcos2θ1+sin2θ4cos6θcos2θsin2θ1+4cos6θ|=0

Applying C1C1+C2, we get

Δ=|2sin2θ4cos6θ21+sin2θ4cos6θ1sin2θ1+4cos6θ|=0

Applying R1R12R3 and R2R22R3, we get

Δ=|0sin2θ24cos6θ01sin2θ24cos6θ1sin2θ1+4cos6θ|=0

On expanding w.r.t. C1, we get

sin2θ(2+4cos6θ)+(2+4cos6θ)(1sin2θ)=0

2+4cos6θ=0cos6θ=12=cos2π3

6θ=2π3θ=π9

θ0,π3



NCERT Chapter Video Solution

Dual Pane