Limit Continuity and Differentiability 7 Question 9

9. Let f be a differentiable function from R to R such that |f(x)f(y)|2|xy|32, for all x,yR. If f(0)=1, then 01f2(x)dx is equal to

(2019 Main, 9 Jan II)

(a) 2

(b) 12

(c) 1

(d) 0

Show Answer

Answer:

Correct Answer: 9. (c)

Solution:

  1. We have, x=3tant and y=3sect

Clearly, dydx=dydtdxdt=ddt(3sect)ddt(3tant)

=3secttant3sec2t=tantsect=sint

and d2ydx2=ddxdydx=ddtdydxdtdx

=ddtdydxdxdt=ddt(sint)ddt(3tant)=cost3sec2t=cos3t3

Now, d2ydx2 at t=π4=cos3π43=13(22)=162



NCERT Chapter Video Solution

Dual Pane