Limit Continuity and Differentiability 7 Question 6

6. Let f(x)=1,2x<0 x21,0x2 and g(x)=|f(x)|+f(|x|). Then, in the interval (2,2),g is

(2019 Main, 11 Jan I)

(a) not differentiable at one point

(b) not differentiable at two points

(c) differentiable at all points

(d) not continuous

Show Answer

Answer:

Correct Answer: 6. (a)

Solution:

  1. Given equation is

(2x)2y=4e2x2y

On applying ’ loge ’ both sides, we get

loge(2x)2y=loge4+logee2x2y2yloge(2x)=loge(2)2+(2x2y)

[logenm=mlogen and logeef(x)=f(x)]

(2loge(2x)+2)y=2x+2loge(2)

y=x+loge21+loge(2x)

On differentiating ’ y ’ w.r.t. ’ x ‘, we get

dydx=(1+loge(2x))1(x+loge2)22x(1+loge(2x))2=1+loge(2x)11xloge2(1+loge(2x))2

So, (1+loge(2x))2dydx=xloge(2x)loge2x



NCERT Chapter Video Solution

Dual Pane