Limit Continuity and Differentiability 7 Question 5

5. Let K be the set of all real values of x, where the function f(x)=sin|x||x|+2(xπ)cos|x| is not differentiable. Then, the set K is equal to

(2019 Main, 11 Jan II)

(a) 0

(b) φ (an empty set)

(c) π

(d) 0,π

where, a and b are non-negative real numbers. Determine the compositie function gof. If (gf)(x) is continuous for all real x determine the values of a and b. Further, for these values of a and b, is gof differentiable at x=0 ? Justify your answer.

(2002,5 M)

Show Answer

Answer:

Correct Answer: 5. (a)

Solution:

  1. Given expression is

2y=cot13cosx+sinxcosx3sinx=cot13cotx+1cotx3

[dividing each term of numerator and denominator by sinx]

=cot1cotπ6cotx+1cotxcotπ6=cot1cotπ6x2cot(AB)=cotAcotB+1cotBcotA

=π6x2,0<x<π6π+π6x,π6<x<π2cot1(cotθ)=π+θ,π<θ<0θ,0<θ<πθπ,π<θ<2π2y=π6x2,0<x<π67π6x2,π6<x<π22dydx=2π6x(1),0<x<π627π6x(1),π6<x<π2dydx=xπ6,0<x<π6x7π6,π6<x<π2



NCERT Chapter Video Solution

Dual Pane