Limit Continuity and Differentiability 7 Question 34

35. Let $f: R \rightarrow R$ be a function such that $f(x+y)=f(x)+f(y), \forall x, y \in R$. If $f(x)$ is differentiable at $x=0$, then

(2011)

(a) $f(x)$ is differentiable only in a finite interval containing zero

(b) $f(x)$ is continuous for all $x \in R$

(c) $f^{\prime}(x)$ is constant for all $x \in R$

(d) $f(x)$ is differentiable except at finitely many points

Show Answer

Answer:

Correct Answer: 35. $(a=1)$

Solution:

  1. Since, $y=e^{x \sin x^{3}}+(\tan x)^{x}$, then

$y=u+v$, where $u=e^{x \sin x^{3}}$ and $v=(\tan x)^{x}$

$$ \Rightarrow \quad \frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x} $$

Here, $u=e^{x \sin x^{3}}$ and $\log v=x \log (\tan x)$

On differentiating both sides w.r.t. $x$, we get

$$ \begin{aligned} \frac{d u}{d x} & =e^{x \sin x^{3}} \cdot\left(3 x^{3} \cos x^{3}+\sin x^{3}\right) \\ \text { and } \quad \frac{1}{v} \cdot \frac{d v}{d x} & =\frac{x \cdot \sec ^{2} x}{\tan x}+\log (\tan x) \\ \frac{d v}{d x} & =(\tan x)^{x}[2 x \cdot \operatorname{cosec}(2 x)+\log (\tan x)] \ldots \text { (iii) } \end{aligned} $$

From Eqs. (i), (ii) and (iii), wet get

$$ \frac{d y}{d x}=e^{x \sin x^{3}}\left(3 x^{3} \cdot \cos x^{3}+\sin x^{3}\right)+(\tan x)^{x} $$

$[2 x \operatorname{cosec} 2 x+\log (\tan x)]$



NCERT Chapter Video Solution

Dual Pane