Limit Continuity and Differentiability 7 Question 32

33. Let $f:[a, b] \rightarrow[1, \infty)$ be a continuous function and

$$ g: R \rightarrow R \text { be defined as } g(x)=\begin{array}{ccc} 0, & \text { if } & x<a \\ \int _a^{x} f(t) d t, & \text { if } & a \leq x \leq b . \\ \int _a^{b} f(t) d t, & \text { if } & x>b \end{array} $$

Then,

(2013)

(a) $g(x)$ is continuous but not differentiable at $a$

(b) $g(x)$ is differentiable on $R$

(c) $g(x)$ is continuous but not differentiable at $b$

(d) $g(x)$ is continuous and differentiable at either $a$ or $b$ but not both

$$ -x-\frac{\pi}{2}, \quad x \leq-\frac{\pi}{2} $$

Show Answer

Answer:

Correct Answer: 33. $x=0$

Solution:

  1. Given, $(a+b x) e^{y / x}=x \Rightarrow y=x \log \frac{x}{a+b x}$

$\Rightarrow \quad y=x[\log (x)-\log (a+b x)]$

On differentiating both sides, we get

$$ \begin{aligned} \frac{d y}{d x} & =x \frac{1}{x}-\frac{b}{a+b x}+1[\log (x)-\log (a+b x)] \\ \Rightarrow x \frac{d y}{d x} & =x^{2} \frac{a}{x(a+b x)}+y \\ \Rightarrow x y _1 & =\frac{a x}{a+b x}+y \end{aligned} $$

Again, differentiating both sides, we get

$$ \begin{array}{rlrl} \Rightarrow & & x y _2+y _1 & =a \frac{(a+b x) \cdot 1-x \cdot b}{(a+b x)^{2}}+y _1 \\ \Rightarrow & x^{3} y _2 & =\frac{a^{2} x^{2}}{(a+b x)^{2}} \\ \Rightarrow & & x^{3} y _2 & =\frac{a x}{(a+b x)} \\ \Rightarrow & x^{3} y _2 & =\left(x y _1-y\right)^{2} \\ \Rightarrow & x^{3} \frac{d^{2} y}{d x^{2}} & =x \frac{d y}{d x}-y \end{array} $$

[from Eq. (ii)]



NCERT Chapter Video Solution

Dual Pane