Limit Continuity and Differentiability 7 Question 30

30. Let f:12,2R and g:12,2R be functions defined by f(x)=[x23] and g(x)x|f(x)+|4x7f(x), where [y] denotes the greatest integer less than or equal to y for yR. Then,

(2016 Adv.)

(a) f is discontinuous exactly at three points in 12,2

(b) f is discontinuous exactly at four points in 12,2

(c) g is not differentiable exactly at four points in 12,2

(d) g is not differentiable exactly at five points in 12,2

Show Answer

Answer:

Correct Answer: 30. (A)p; (B) r

Solution:

  1. Given, x=secθcosθ and y=secnθcosnθ On differentiating w.r.t. θ respectively, we get

dxdθ=secθtanθ+sinθ

 and dydθ=nsecn1θsecθtanθncosn1θ(sinθ)dxdθ=tanθ(secθ+cosθ) and dydθ=ntanθ(secnθ+cosnθ)dydx=n(secnθ+cosnθ)secθ+cosθdydx2=n2(secnθ+cosnθ)2(secθ+cosθ)2=n2(secnθcosnθ)2+4(secθcosθ)2+4=n2(y2+4)(x2+4)(x2+4)dydx2=n2(y2+4) 31. Let φ(x)=|A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)|

Given that, α is repeated root of quadratic equation f(x)=0.

We must have f(x)=(xα)2g(x)

φ(x)=|A(x)B(x)C(x)A(α)B(α)C(α)A(α)B(α)C(α)|φ(α)=|A(α)B(α)C(α)A(α)B(α)C(α)A(α)B(α)C(α)|=0

x=α is root of φ(x).

(xα) is a factor of φ(x) also. 

or we can say (xα)2 is a factor of f(x).

φ(x) is divisible by f(x)



NCERT Chapter Video Solution

Dual Pane