Limit Continuity and Differentiability 7 Question 29

29. Let a,bR and f:RR be defined by f(x)=acos(|x3x|)+b|x|sin(|x3+x|). Then, f is

(2016 Adv.)

(a) differentiable at x=0, if a=0 and b=1

(b) differentiable at x=1, if a=1 and b=0

(c) not differentiable at x=0, if a=1 and b=0

(d) not differentiable at x=1, if a=1 and b=1

Show Answer

Answer:

Correct Answer: 29. (A) p, q, r, s; (B) p,s; (C) r,s; (D) p,s

Solution:

  1. Here, (siny)sinπ2x+32sec1(2x)+2xtanlog(x+2)=0

On differentiating both sides, we get

(siny)sinπ2xlog(siny)cosπ2xπ2+sinπ2x(siny)sinπ2x1cosydydx+322(2|x|)4x21+2xsec2log(x+2)(x+2)+2xlog2tanlog(x+2)=0

Putting x=1,y=3π, we get



NCERT Chapter Video Solution

Dual Pane