Limit Continuity and Differentiability 7 Question 27

27. Let f:(0,π)R be a twice differentiable function such that limtxf(x)sintf(t)sinxtx=sin2x for all x(0,π).

If fπ6=π12, then which of the following statement(s) is (are) TRUE?

(2018 Adv.)

(a) fπ4=π42

(b) f(x)<x46x2 for all x(0,π)

(c) There exists α(0,π) such that f(α)=0

(d) fπ2+fπ2=0

Show Answer

Answer:

Correct Answer: 27. (a, c, d)

Solution:

  1. Given, y=f2x1x2+1

and f(x)=sin2x

dydx=f2x1x2+1ddx2x1x2+1=sin22x1x2+1(x2+1)2(2x1)(2x)(x2+1)2

=sin22x1x2+12x2+2x+2(x2+1)2=2(x2x1)(x2+1)2sin22x1x2+1



NCERT Chapter Video Solution

Dual Pane