Limit Continuity and Differentiability 7 Question 24

24. There exists a function $f(x)$ satisfying $f(0)=1$, $f^{\prime}(0)=-1, f(x)>0, \forall x$ and

$(1982,2 M)$

(a) $f^{\prime \prime}(x)<0, \forall x$

(b) $-1<f^{\prime \prime}(x)<0, \forall x$

(c) $-2 \leq f^{\prime \prime}(x) \leq-1, \forall x$

(d) $f^{\prime \prime}(x)<-2, \forall x$

Show Answer

Answer:

Correct Answer: 24. $(b, c)$

Solution:

  1. Let $u=\sec ^{-1}-\frac{1}{2 x^{2}-1}$ and $v=\sqrt{1-x^{2}}$

Put $\quad x=\cos \theta$

$\therefore \quad u=\sec ^{-1}(-\sec 2 \theta)$ and $v=\sin \theta$

$\Rightarrow \quad u=\pi-2 \theta \quad\left[\because \sec ^{-1}(-x)=\pi-\sec ^{-1} x\right]$

and $\quad v=\sin \theta$

$\Rightarrow \quad \frac{d u}{d \theta}=-2$

an $\quad d \frac{d v}{d \theta}=\cos \theta$

$\Rightarrow \quad \frac{d u}{d v}=-\frac{2}{\cos \theta}, \quad \frac{d u}{d v}{ } _{\theta=\pi / 3}=-4$



NCERT Chapter Video Solution

Dual Pane