Limit Continuity and Differentiability 7 Question 15

15. If f is a differentiable function satisfying

f1n=0,n1,nI, then

(2005,2M)

(a) f(x)=0,x(0,1]

(b) f(0)=0=f(0)

(c) f(0)=0 but f(0) not necessarily zero

(d) |f(x)|1,x(0,1]

Show Answer

Answer:

Correct Answer: 15. (b)

Solution:

  1. Since,

f(x)=f(x)

ddxf(x)=f(x)g(x)=f(x)[g(x)=f(x), given ]( (i)  Also, F(x)=fx2+gx2F(x)=2fx2fx212

+2gx2gx212=0 [from Eq.(i)] 

F(x) is constant F(10)=F(5)=5



NCERT Chapter Video Solution

Dual Pane