Limit Continuity and Differentiability 6 Question 1

1. For the function f(x)=xcos1x,x1,

(a) for atleast one x in the interval

(2009)

[1,),f(x+2)f(x)<2

(b) limxf(x)=1

(c) for all x in the interval [1,),f(x+2)f(x)>2

(d) f(x) is strictly decreasing in the interval [1,)

Analytical & Descriptive Questions

 2. Let f(x)=x+a, if x<0|x1|, if x0g(x)=x+1, if x<0(x1)2+b, if x0

Show Answer

Answer:

Correct Answer: 1. (b, c, d)

Solution:

  1. Given function, g(x)=|f(x)|

where f:RR be differentiable at cR and f(c)=0, then for function ’ g ’ at x=c

g(c)=limh0g(c+h)g(c)h[ where h>0]=limh0|f(c+h)||f(c)|h=limh0|f(c+h)|h[asf(c)=0 (given)] =limh0|f(c+h)f(c)h|=|limh0f(c+h)f(c)h|=|f(c)|[f is differentiable at x=c]

Now, if f(c)=0, then g(x) is differentiable at x=c, otherwise LHD (at x=c ) and RHD (at x=c ) is different.



NCERT Chapter Video Solution

Dual Pane