Limit Continuity and Differentiability 4 Question 2

2. The function f(x)=[x]2[x2] (where, [x] is the greatest integer less than or equal to x ), is discontinuous at

(a) all integers

(1999,2M)

(b) all integers except 0 and 1

(c) all integers except 0

(d) all integers except 1 Objective Questions II

(One more than one correct option)

Show Answer

Answer:

Correct Answer: 2. (b)

Solution:

  1. Given function

f(x)=sin(p+1)x+sinxx,x<0q,x=0x+x2xx3/2,x>0

is continuous at x=0, then

f(0)=limx0f(x)=limx0+f(x) (i) limx0f(x)=limx0sin(p+1)x+sinxx=p+1+1=p+2limx0sin(ax)x=a and limx0+f(x)=limx0+x+x2xx3/2=limx0+x[(1+x)1/21]xx1+12x+121212!x2+.1=limx0+x[(1+x)n=1+nx+n(n1)12x2+n(n1(n2))123x3+,|x|<1]

=limx0+12+121212!x+=12

From Eq. (i), we get

f(0)=q=12 and limx0f(x)=p+2=12p=32 So, (p,q)=32,12



NCERT Chapter Video Solution

Dual Pane