Limit Continuity and Differentiability 4 Question 1

1. If the function f defined on π6,π3 by

f(x)=2cosx1cotx1,xπ4 is continuous, k,x=π4

then k is equal to

(2019 Main, 9 April I)

(a) 12

(b) 2

(c) 1

(d) 12

Show Answer

Answer:

Correct Answer: 1. (a)

Solution:

  1. Given 6f(x)4t3dt=(x2)g(x)

g(x)=6f(x)4t3dt(x2)

So, limx2g(x)=limx26f(x)4t3dtx2

00 form as x2f(2)=6

limx2g(x)=limx24(f(x))3f(x)1ddxφ1(x)φ2(x)f(t)dt=f(φ2(x)),φ2(x)f(φ1(x))φ1(x)

On applying limit, we get

limx2g(x)=4(f(2))3f(2)=4×(6)3148,f(2)=6 and f(2)=148=4×21648=18



NCERT Chapter Video Solution

Dual Pane