Limit Continuity and Differentiability 3 Question 1

1. If α and β are the roots of the equation 375x225x2=0, then limnr=1nαr+limnr=1nβr is equal to

(2019 Main, 12 April I)

(a) 21346

(b) 29358

(c) 112

(d) 7116

Show Answer

Answer:

Correct Answer: 1. (c)

Solution:

  1. Given function is

f(x)=2cosx1cotx1,xπ4k,x=π4

Function f(x) is continuous, so it is continuous at x=π4.

fπ4=limxπ4f(x)k=limxπ42cosx1cotx1

Put x=π4+h, when xπ4, then h0

k=limh02cosπ4+h1cotπ4+h1=limh0212cosh12sinh1coth1coth+11

[cos(x+y)=cosxcosysinxsiny and

cot(x+y)=cotxcoty1coty+cotx]

=limh0coshsinh121+coth=limh0(1cosh)+sinh2sinh(sinh+cosh)=limh02sin2h2+2sinh2cosh24sinh2cosh2(sinh+cosh)=limh0sinh2+cosh22cosh2×(sinh+cosh)k=12



NCERT Chapter Video Solution

Dual Pane